A good way would be to create as many variables as possible that map anything relevant, genes, upbringing, sexual and gender expression, etc., and then doing a PCA to reduce the defining vector to as few elements as possible.
I like how you think but I’m not sure if that alone will hold water. A variable can vary wildly even though it’s not very relevant to the property you’re interested in, and PCA would consider such a variable to be very significant. Perhaps a neural network could find a latent space. But ideally we want the components to have some intuitive meaning for humans.
You are not logged in. However you can subscribe from another Fediverse account, for example Lemmy or Mastodon. To do this, paste the following into the search field of your instance: !programmerhumor@lemmy.ml
Post funny things about programming here! (Or just rant about your favourite programming language.)
Rules:
Posts must be relevant to programming, programmers, or computer science.
No NSFW content.
Jokes must be in good taste. No hate speech, bigotry, etc.
A good way would be to create as many variables as possible that map anything relevant, genes, upbringing, sexual and gender expression, etc., and then doing a PCA to reduce the defining vector to as few elements as possible.
I like how you think but I’m not sure if that alone will hold water. A variable can vary wildly even though it’s not very relevant to the property you’re interested in, and PCA would consider such a variable to be very significant. Perhaps a neural network could find a latent space. But ideally we want the components to have some intuitive meaning for humans.