Hello internet users. I have tried gpt4all and like it, but it is very slow on my laptop. I was wondering if anyone here knows of any solutions I could run on my server (debian 12, amd cpu, intel a380 gpu) through a web interface. Has anyone found any good way to do this?

@passepartout@feddit.de
link
fedilink
English
48M

I tried Huggingface TGI yesterday, but all of the reasonable models need at least 16 gigs of vram. The only model i got working (on a desktop machine with a amd 6700xt gpu) was microsoft phi-2.

@HumanPerson@sh.itjust.works
creator
link
fedilink
English
28M

I know the gpt4all models run fine on my desktop with 8gig vram. It does use a decent chunk of my normal ram though. Could the gpt4all models work on huggingface or do they use different formats? Sorry if I am completely misunderstanding huggingface, I haven’t heard of it until now.

@passepartout@feddit.de
link
fedilink
English
28M

Huggingface TGI is just a piece of software handling the models, like gpt4all. Here is a list of models officially supported by TGI, although they state that you can try different ones as well. You follow the link and look for the files section. The size of the model files (safetensors or pickele binaries) gives a good estimate of how much vram you will need. Sadly this is more than most consumer graphics cards have except for santacoder and microsoft phi.

@HumanPerson@sh.itjust.works
creator
link
fedilink
English
18M

I don’t really want to try to get that to work. I wonder how hard it would be to create my own webui using gpt4all’s Python package.

@Kir@feddit.it
link
fedilink
English
28M

Have you been able to use it with your AMD GPU? I have a 6800 and would like to test something

@passepartout@feddit.de
link
fedilink
English
0
edit-2
8M

Yes, since we have similar gpus you could try the following to run it in a docker container on linux, taken from here and slightly modified:

#!/bin/bash

model=microsoft/phi-2
# share a volume with the Docker container to avoid downloading weights every run
volume=<path-to-your-data-directory>/data

docker run -e HSA_OVERRIDE_GFX_VERSION=10.3.0 -e PYTORCH_ROCM_ARCH="gfx1031" --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4-rocm --model-id $model

Note how the rocm version has a different tag and that you need to mount your gpu device into the container. The two environment variables are specific to my (any maybe yours also) gpu architecture. It will need a while to download though.

@BetaDoggo_@lemmy.world
link
fedilink
English
28M

Koboldcpp should allow you to run much larger models with a little bit of ram offloading. There’s a fork that supports rocm for AMD cards: https://github.com/YellowRoseCx/koboldcpp-rocm

Make sure to use quantized models for the best performace, q4k_M being the standard.

Create a post

A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don’t control.

Rules:

  1. Be civil: we’re here to support and learn from one another. Insults won’t be tolerated. Flame wars are frowned upon.

  2. No spam posting.

  3. Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it’s not obvious why your post topic revolves around selfhosting, please include details to make it clear.

  4. Don’t duplicate the full text of your blog or github here. Just post the link for folks to click.

  5. Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).

  6. No trolling.

Resources:

Any issues on the community? Report it using the report flag.

Questions? DM the mods!

  • 1 user online
  • 125 users / day
  • 420 users / week
  • 1.16K users / month
  • 3.85K users / 6 months
  • 1 subscriber
  • 3.68K Posts
  • 74.2K Comments
  • Modlog