A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.
Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.
Subcommunities on Beehaw:
This community’s icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
All of those questions you asked it return authoritative answers which you take on face value, unless you spend extra time fact checking them yourself.
Yeah but accuracy isn’t a given with the other methods either. If I ask some randos on reddit I won’t get a perfect answer either. If I google specs or reviews online they are often biased, wrong (think the magical Chinese lumens of torches) or even literally fraudulent paid reviews too.
So yeah for me the LLM output is more than good enough with a bit of verification if necessary.
I don’t really understand why people are suddenly hung up about holding LLMs up to this lofty ideal of an unbiased super-truth. Where did that requirement come from all of a sudden? It’s not really realistic and not something we’ve ever had in the past.
I feel the same about self-driving systems. People get all hung up if they crash once in a while, expecting them to be 100% perfect in all situations. But ignoring the concept that they already might be a hell of a lot safer than human drivers. They fail in different situations generally but why do we suddenly demand perfection?
I’m sorry, but citing other examples of bad research practices does not magically make AI reliable. That is a whataboutism.