Researchers harness neurophysiology and machine learning for 97% accuracy in predicting future chart-toppers.

Why it matters: A recent study at Claremont Graduate University has applied machine learning to neurophysiological data, identifying hit songs with an astonishing 97% accuracy.

Read more: ‘Neuroforecasting’: How science can predict the next hit song with 97% accuracy.

Read the Research article.

Discussion on Hacker News.

This has been solved already.

4 chord song…

https://www.youtube.com/watch?v=5pidokakU4I

“Prisencolinensinainciusol”, but with vocal pitch-shifting applied for a modern twist.

undefined> Prisencolinensinainciusol

i dont know what that means… but sounds fancy!

@14th_cylon@lemm.ee
link
fedilink
English
11Y

the sweet summer machine learning child is 35 years behind… https://en.wikipedia.org/wiki/The_Manual

Nari
link
fedilink
English
5
edit-2
1Y

I’m increasingly convinced that the pop music of the future will consist entirely of mediocre or terrible songs written by real people – that the flaws and fuck-ups of lousy artists will suddenly seem like magic when compared to an endless stream of algorithmically generated, pristine computer bullshit.

doleo
link
fedilink
21Y

It seems likely to me that ‘pop’ music won’t be created by people. As a result, people won’t be made famous through music anymore, the cult of celebrity will move on to be more era-appropriate.

I mean, this only happened in the first place because it was extremely profitable to sell lots of records/concert tickets. That doesn’t seem to be the case now.

So, if pop music has been manufactured to sell an image to impressionable people, there’s little incentive to do that these days. It’s surely more lucrative to fund an influencer than a ‘musician’.

You might like Wesley Willis. https://www.youtube.com/watch?v=4jTPbcnqPxQ

Lenguador
link
fedilink
11Y

Cool, you posted the original with the Tim Minchin callout.

Lupec
link
fedilink
English
11Y

Fuck yeah, that was my go-to app for like a decade right up until the great reddit migration. I’ll very gladly pay for Pro all over again!

cura
creator
link
fedilink
English
3
edit-2
1Y

I’m assuming lemmy’s bug is acting up again lol. Anyway, I am also very excited about Sync.

Lupec
link
fedilink
English
11Y

Oh, huh. Came here to ask which bug but I see now lol. I had no knowledge of this post’s existence beforehand so yup, probably.

cura
creator
link
fedilink
English
2
edit-2
1Y

Abstract

Identifying hit songs is notoriously difficult. Traditionally, song elements have been measured from large databases to identify the lyrical aspects of hits. We took a different methodological approach, measuring neurophysiologic responses to a set of songs provided by a streaming music service that identified hits and flops. We compared several statistical approaches to examine the predictive accuracy of each technique. A linear statistical model using two neural measures identified hits with 69% accuracy. Then, we created a synthetic set data and applied ensemble machine learning to capture inherent non-linearities in neural data. This model classified hit songs with 97% accuracy. Applying machine learning to the neural response to 1st min of songs accurately classified hits 82% of the time showing that the brain rapidly identifies hit music. Our results demonstrate that applying machine learning to neural data can substantially increase classification accuracy for difficult to predict market outcomes.

This is very preliminary. The samples were songs that were already hits at the time of the study, with no way to account for contamination. It’s highly plausible that the subjects had heard the “hit” songs before the study, and they were just measuring recognition.

Full paper is here: https://www.frontiersin.org/articles/10.3389/frai.2023.1154663/full

cura
creator
link
fedilink
English
41Y

Surveys After each song, participants were asked to rank how much they liked the song (1 to 10), if they would replay the song (0, 1), recommend the song to their friends (0, 1), if they had heard it previously to assess familiarity (0, 1), and if they found the song offensive (0, 1). We also showed participants lyrics from the song and lyrics created by the researchers and asked them to identify the song lyrics to measure their memory of the song (0, 1).

I still think your concern is legitimate.

Memory is funny. Stuff can play in the background and become familiar without you being consciously aware of it.

It would be possible to do this study without contamination by using completely unknown and newly-released songs as a dataset, and checking against future chart data regarding the popularity, or by examining the reaction of an isolated group of people without constant musical bombardment.

@Spzi@lemmy.click
link
fedilink
English
31Y

It would be possible to do this study without contamination by using completely unknown and newly-released songs

When writing songs, I always wondered if that genius idea is actually just something I heard 10 years ago, but don’t remember consciously. Similarly, I wonder if I like a catchy tune because it is catchy in itself, or because it reminds me of something which I cannot recall consciously right now.

Sometimes, I had these moments later when the dots connect, sometimes not. With what confidence could I conclude something is new and original?

I guess that’s just another task for future AI.

Create a post

A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.

Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.

Subcommunities on Beehaw:


This community’s icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.

  • 1 user online
  • 64 users / day
  • 174 users / week
  • 621 users / month
  • 2.31K users / 6 months
  • 1 subscriber
  • 3.28K Posts
  • 67K Comments
  • Modlog