Some backend libraries let you write SQL queries as they are and deliver them to the database. They still handle making the connection, pooling, etc.
ORMs introduce a different API for making SQL queries, with the aim to make it easier. But I find them always subpar to SQL, and often times they miss advanced features (and sometimes not even those advanced).
It also means every time I use a ORM, I have to learn this ORM’s API.
SQL is already a high level language abstracting inner workings of the database. So I find the promise of ease of use not to beat SQL. And I don’t like abstracting an already high level abstraction.
Alright, I admit, there are a few advantages:
But ultimately I find these benefits far outweighed by the benefits of pure sql.
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person’s post makes sense in another community cross post into it.
Hope you enjoy the instance!
Follow the wormhole through a path of communities !webdev@programming.dev
Since working with SQLAlchemy a lot (specifically it’s SQL compiler, not it’s ORM), I don’t want to work with SQL any other way. I want to have the possibility to extract column definitions into named variables, reuse queries as columns in other queries, etc. I don’t want to concatenate SQL strings ever again.
Having a DSL or even a full language which compiles to SQL is clearly the superior way to work with SQL.
SQLAlchemy is awesome, one of my favorite libraries I found since diving back into python
TL;DR you can’t be an expert at every aspect of coding, so I let the big boys handle SQL and don’t torture the world with my abysmal SQL code.
I’ve seen enough bad SQL to claim you’re wrong (I write bad SQL myself, so if you write SQL like I do, you’re bad at it).
Seriously, the large majority of devs write terrible SQL and don’t know how to optimise queries in any way. They just mash together a query with whichever
JOIN
they learned first.NATURAL JOIN
? Sure, don’t mind if I do! Might end up being aLEFT JOIN
,RIGHT JOIN
, orINNER JOIN
, but at least I got my data back right? Off the top of your head, do you know all the joins that exist, when to use which one, and which ones are aliases for another? Do you know how to write optimalJOIN
s when querying data with multiple relations?When writing similar queries, do you think most are going to copy-paste something that worked and adapt it? What if you find out that it could be optimised? Then you’ll have to search for all queries that look somewhat similar and fix those.
When you create an index for a table, are you going to tell me you are going to read up on the different types each time to make sure you’re using the one that makes sense? Postgres has 6, MySQL only has 2 tbf depending on storage engine, but what about other DBs? If you write something for one DB and a client or user wants to host it with another, what will your code look like afterwards?
Others have brought up models in code, so that’s already discussed, but what about migrations? Do you think it’s time well-spent writing every single migration yourself? I had the distinct pleasure of having to deal with hand-written migrations that were copy-pasted and modified columns that had nothing to do with the changed models, weren’t in a transaction, failed half-way through, and tracking down which migration had actually failed. These were seasoned developers who completely forgot to put any migration in transactions. They had to learn the hard way.
I wouldn’t say that, but instead, that they strive to keep everything contained in one language/stack/deployment workflow, with the benefit of code reusability (for instance, it’s completely idiotic, if you ask me, that your models’ definition and validation code get duplicated in 3 different application layers (front/API/DB) in as many different languages.
ORMs are not a 100% solution, but do wonders for the first 98% while providing escape hatches for whatever weird case you might encounter, and are overall a net positive in my book. Moreover, while I totally agree that having DB/storage-layer knowledge is super valuable, SQL isn’t exactly a flawless language and there’s been about 50 years of programming language research since it was invented.
You, my friend, should try EdgeDB. A database and an ORM in one.
When you change the data model, you can get to 100%, which you say is impossible for ORMs
This is a project I am already keeping a close eye on, but I would rather qualify it as a “better SQL” than as an alternative to your typical (framework’s) ORM. For instance, it won’t morph CRUD operations and data migrations into a language/stack that’s native to the rest of the project (and by extension, imply learning another language/stack/set of tools…)
You don’t even mention the 2 main advantages:
I was about to write the same thing. Really the object thing is the whole reason to use ORMs.
Using plain SQL is a compatibility and migration nightmare in medium and bigger sized projects. If anything using plain SQL is just bad software design at least in an OOP context.
Not to mention refactoring support…
There seems to be a trend of new (old) developers who find that strong typing is nothing more than a nuisance.
History repeating itself in the IT world. I don’t wanna be around to support the systems that inherit these guys.
I too want my query results in an object, but thankfully libraries like sqlx for golang can do this without the extra overhead of an ORM. You give them a select query and they spit out hydrated objects.
As far as multiple DBs go, you can accomplish the same thing as long as you write ANSI standard SQL queries.
I’ve used ORMs heavily in the past and might still for a quick project or for the “command” side of a CQRS app. But I’ve seen too much bad performance once people move away from CRUD operations to reports via an ORM.
Even something as ubiquitous as JSON is not handled in the same way in different databases, same goes for Dates, and UUID. I am not even mentioning migrations scripts. As soon as you start writing raw SQL, I pretty sure you will hit a compatibility issue.
I was specifically talking about python, can’t argue with golang. OK you have a valid point for performance, gotta keep an eye on that. However, I am satisfied for our CRUD api
Hmmm
I worked on one project only which used what I guess is an ORM-like pattern, and I have to say it was actually really nice. The code was Javascript, and there was a mapping:
For each class, there was a big mapping table which indicated which database-backed fields needed to exist in that class, and then there was automated code that (1) could create or update the database to match the specified schema (2) would create helper methods in each class for basic data functions – the options being “Create me a new non-database-backed object X” “I’ve set up the new object, insert it into the DB” “give me an iterator of all database-backed objects matching this arbitrary query”, “update the appropriate row with the changes I’ve made to this object”, “delete this object from the DB,” and “I’m doing something unusual, just run this SQL query”.
I honestly really liked it, it made things smooth. Maybe it was the lack of hesitation about dropping back to SQL for stuff where you needed SQL, but I never had issues with it and it seemed to me like it made life pretty straightforward.
The SQL generation is great. It means you can quickly get up and running. If the orm is well designed it should perform well for the majority of queries.
The other massive bonus is the object mapping. This can be an absolute pain in the ass. Especially between datasets and classes.
I find SQL to be easy enough to write without needing generation. It is very well documented, and it is very declarative and English-like. More than any ORM, imo.
I don’t c#'s EF is brilliant
LINQ looks great with the query syntax:
No it creates the first one. You can actually use a .Select to grab only the fields you want as well.
If I added .Include(p => p.Category) it would also populate the Category property. At the point it would have to do the join.
Also the table and field names can be specified via attributes or the fluent model builder. Those are the C# object and property names.
I find SQL, especially prepared statements, to be essentially a function call with a string of text containing identifiers that get swapped out, then a bunch of arguments that get swapped in.
Perhaps there are better SQL libraries that make this more fluent.
But that is so close to an ORM, I feel like I might as well use an ORM.
I’m also a big fan of raw SQL. Most ORMs are fine for CRUD stuff, but the moment you want to start using the “relational” part of the database (which… that’s the whole point) they start to irritate me. They also aren’t free - if you’re lucky, you pay at comptime (Rust’s Diesel) but I think a lot of ORMs do everything at runtime via reflection and the like.
For CRUD stuff, I usually just define some interface(s) that take a query and manually bind/extract
struct
fields. This definitely wouldn’t scale, but it’s fine when you only a handful of tables and it keeps the abstraction/performance tradeoff low.I don’t like traditional ORM’s but I really enjoy using jooq. Statically typed queries are great with this library.
jOOQ is really the best of both worlds. Just enough of an ORM to make trivial CRUD operations trivial, but for anything beyond that, the full expressive power of SQL with added compile-time type safety.
And it’s maintained by a super helpful project lead, too.
I used to be an ORM-hater, but my experience with Django has changed my mind, somewhat. I still think there are projects where ORM is unnecessary or even harmful, but for some projects, being able to lean on an ORM to create simple queries/updates or to handle DB migrations is a big time saver. And you can always fall back to hand-written SQL when you need to as long as the ORM allows it, which it absolutely should.
Django’s ORM is nice. Of all the ORMs I hate, I hate Django’s the least.
Dapper.net is the right balance imo… you get the shape the query and get object field mapping.
Completely agree. Most ORMs focus on hiding SQL away (for good reasons, such as portability and type safety), but I wish there were more approaching it in the reverse. That is, have the user write schemas, queries and migrations in SQL, and generate models with typesafe APIs in return. I’m only aware of SQLDelight in this space, but it’s such a great idea to have the source of truth be actual SQL, and a build time generator and validator working alongside you.
sqlboiler does this in Go
I absolutely prefer using an ORM for querying but I’m definitely never letting the ORM create the schema for me. I will always do that myself and generate the ORM definitions from SQL, and I will never use an ORM that doesn’t have that as an option.
Check out Elixir’s Ecto. You basically do write SQL for querying, it’s just lightly wrapped in a functional approach.
I find ORMs exist best in a mid-sized project, most valuable in a CQRS context.
For anything small, they massively over complicate the architecture. For the large enterprise systems, they always seem to choke on an already large and complex domain.
So a mid size project, maybe with less than a hundred or so data objects works best with an ORM. In that way, they’ve also been most productive mainly for the CUD of the CRUD approach. I’d rather write my domain logic with the speed and safety of an ORM during writes, but leverage the flexibility and expressiveness of SQL when I’m crafting efficient read queries.
Better than an ORM is to use a query builder. You get the expressiveness of SQL with the safety and convenience of an ORM.
Most developers that use ORMs create poorly performing monstrosities, and most developers who write raw SQL create brittle, unsafe and unmaintainable software. There is a happy medium here.
I also find ORMs and query builders much easier to debug than most mative SQL database queries. Mostly because native SQL error messages tend to be some of the most unhelpful, most undescriptive crap out there, and ORMs help a bit with that.
Seriously, fuck MySQL error messages. 9 times out of 10 shit boils down to “you got some sort of error somewhere roughly over there, go fix”.
Invalid character in position 903 lol