to be fair, though, 1 and 0 are just binary representations of values, same as decimal and hexadecimal. within your example, we’d absolutely find the entire works of shakespeare encoded in ascii, unicode, and lcd pixel format with each letter arranged in 3x5 grids.
No, because you can’t mathematically guarantee that pi contains long strings of predetermined patterns.
The 1.101001000100001… example by the other user was just that - an example. Their number is infinite, but never contains a 2. Pi is also infinite, but does it contain the number e to 100 digits of precision? Maybe. Maybe not. The point is, we don’t know and we can’t prove it either way (except finding it by accident).
Actually, there’d only be single pixels past digit 225 in the last example, if I understand you correctly.
If we can choose encoding, we can “cheat” by effectively embedding whatever we want to find in the encoding. The existence of every substring in a one of a set of ordinary encodings might not even be a weaker property than a fixed encoding, though, because infinities can be like that.
You are not logged in. However you can subscribe from another Fediverse account, for example Lemmy or Mastodon. To do this, paste the following into the search field of your instance: !programmerhumor@lemmy.ml
Post funny things about programming here! (Or just rant about your favourite programming language.)
Rules:
Posts must be relevant to programming, programmers, or computer science.
No NSFW content.
Jokes must be in good taste. No hate speech, bigotry, etc.
to be fair, though, 1 and 0 are just binary representations of values, same as decimal and hexadecimal. within your example, we’d absolutely find the entire works of shakespeare encoded in ascii, unicode, and lcd pixel format with each letter arranged in 3x5 grids.
Doesn’t, the binary pattern 10101010 dosen’t exists on that number, for example.
You can encode base 2 as base 10, I don’t think anyone is saying it exists in binary form.
Well it’s infinite so it has to I guess
Does this count:
No, because you can’t mathematically guarantee that pi contains long strings of predetermined patterns.
The 1.101001000100001… example by the other user was just that - an example. Their number is infinite, but never contains a 2. Pi is also infinite, but does it contain the number e to 100 digits of precision? Maybe. Maybe not. The point is, we don’t know and we can’t prove it either way (except finding it by accident).
Actually, there’d only be single pixels past digit 225 in the last example, if I understand you correctly.
If we can choose encoding, we can “cheat” by effectively embedding whatever we want to find in the encoding. The existence of every substring in a one of a set of ordinary encodings might not even be a weaker property than a fixed encoding, though, because infinities can be like that.